--- a/getting-started-with-symbolics/slides.tex Wed Nov 10 12:23:40 2010 +0530
+++ b/getting-started-with-symbolics/slides.tex Wed Nov 10 17:19:54 2010 +0530
@@ -1,21 +1,34 @@
-% Created 2010-10-21 Thu 00:06
+% Created 2010-11-10 Wed 17:18
\documentclass[presentation]{beamer}
-\usetheme{Warsaw}\useoutertheme{infolines}\usecolortheme{default}\setbeamercovered{transparent}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
+\usepackage{fixltx2e}
\usepackage{graphicx}
\usepackage{longtable}
\usepackage{float}
\usepackage{wrapfig}
\usepackage{soul}
+\usepackage{t1enc}
+\usepackage{textcomp}
+\usepackage{marvosym}
+\usepackage{wasysym}
+\usepackage{latexsym}
\usepackage{amssymb}
\usepackage{hyperref}
-
+\tolerance=1000
+\usepackage[english]{babel} \usepackage{ae,aecompl}
+\usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet}
+\usepackage{listings}
+\lstset{language=Python, basicstyle=\ttfamily\bfseries,
+commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen},
+showstringspaces=false, keywordstyle=\color{blue}\bfseries}
+\providecommand{\alert}[1]{\textbf{#1}}
-\title{Plotting Data }
+\title{Getting started with symbolics}
\author{FOSSEE}
-\date{2010-09-14 Tue}
+\date{}
+\usetheme{Warsaw}\usecolortheme{default}\useoutertheme{infolines}\setbeamercovered{transparent}
\begin{document}
\maketitle
@@ -25,43 +38,222 @@
+
+
+
\begin{frame}
-\frametitle{Tutorial Plan}
+\frametitle{Outline}
\label{sec-1}
+
\begin{itemize}
+\item Defining symbolic expressions in sage.
+\item Using built-in constants and functions.
+\item Performing Integration, differentiation using sage.
+\item Defining matrices.
+\item Defining Symbolic functions.
+\item Simplifying and solving symbolic expressions and functions.
+\end{itemize}
+\end{frame}
+\begin{frame}
+\frametitle{Questions 1}
+\label{sec-2}
+
+\begin{itemize}
+\item Define the following expression as symbolic
+ expression in sage.
+
+\begin{itemize}
+\item x$^2$+y$^2$
+\item y$^2$-4ax
+\end{itemize}
+
+\end{itemize}
+
+
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solutions 1}
+\label{sec-3}
+
+\begin{verbatim}
+var('x,y')
+x^2+y^2
+
+var('a,x,y')
+y^2-4*a*x
+\end{verbatim}
+\end{frame}
+\begin{frame}
+\frametitle{Questions 2}
+\label{sec-4}
+
+\begin{itemize}
+\item Find the values of the following constants upto 6 digits precision
+
+\begin{itemize}
+\item pi$^2$
+\end{itemize}
+
+\item Find the value of the following.
+
+\begin{itemize}
+\item sin(pi/4)
+\item ln(23)
+\end{itemize}
+
+\end{itemize}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solutions 2}
+\label{sec-5}
+
+\begin{verbatim}
+n(pi^2,digits=6)
+n(sin(pi/4))
+n(log(23,e))
+\end{verbatim}
+\end{frame}
+\begin{frame}
+\frametitle{Question 2}
+\label{sec-6}
-\item Defining symbolic expressions in sage.\\
-\label{sec-1.1}%
-\item Using built-in costants and functions.\\
-\label{sec-1.2}%
-\item Performing Integration, differentiation using sage.\\
-\label{sec-1.3}%
-\item Defining matrices.\\
-\label{sec-1.4}%
-\item Defining Symbolic functions.\\
-\label{sec-1.5}%
-\item Simplifying and solving symbolic expressions and functions.\\
-\label{sec-1.6}%
-\end{itemize} % ends low level
+\begin{itemize}
+\item Define the piecewise function.
+ f(x)=3x+2
+ when x is in the closed interval 0 to 4.
+ f(x)=4x$^2$
+ between 4 to 6.
+\item Sum of 1/(n$^2$-1) where n ranges from 1 to infinity.
+\end{itemize}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solution Q1}
+\label{sec-7}
+
+\begin{verbatim}
+var('x')
+h(x)=3*x+2
+g(x)= 4*x^2
+f=Piecewise([[(0,4),h(x)],[(4,6),g(x)]],x)
+f
+\end{verbatim}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solution Q2}
+\label{sec-8}
+
+\begin{verbatim}
+var('n')
+f=1/(n^2-1)
+sum(f(n), n, 1, oo)
+\end{verbatim}
+
+\end{frame}
+\begin{frame}
+\frametitle{Questions 3}
+\label{sec-9}
+
+\begin{itemize}
+\item Differentiate the following.
+
+\begin{itemize}
+\item x$^5$*log(x$^7$) , degree=4
+\end{itemize}
+
+\item Integrate the given expression
+
+\begin{itemize}
+\item x*sin(x$^2$)
+\end{itemize}
+
+\item Find x
+
+\begin{itemize}
+\item cos(x$^2$)-log(x)=0
+\item Does the equation have a root between 1,2.
+\end{itemize}
+
+\end{itemize}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solutions 3}
+\label{sec-10}
+
+\begin{verbatim}
+var('x')
+f(x)= x^5*log(x^7)
+diff(f(x),x,5)
+
+var('x')
+integral(x*sin(x^2),x)
+
+var('x')
+f=cos(x^2)-log(x)
+find_root(f(x)==0,1,2)
+\end{verbatim}
+\end{frame}
+\begin{frame}
+\frametitle{Question 4}
+\label{sec-11}
+
+\begin{itemize}
+\item Find the determinant and inverse of :
+
+ A=[[x,0,1][y,1,0][z,0,y]]
+\end{itemize}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solution 4}
+\label{sec-12}
+
+\begin{verbatim}
+var('x,y,z')
+A=matrix([[x,0,1],[y,1,0],[z,0,y]])
+A.det()
+A.inverse()
+\end{verbatim}
\end{frame}
\begin{frame}
\frametitle{Summary}
-\label{sec-2}
+\label{sec-13}
+
\begin{itemize}
+\item We learnt about defining symbolic
+ expression and functions.
+\item Using built-in constants and functions.
+\item Using <Tab> to see the documentation of a
+ function.
+\end{itemize}
+
+
+\end{frame}
+\begin{frame}
+\frametitle{Summary}
+\label{sec-14}
-\item We learnt about defining symbolic expression and functions.\\
-\label{sec-2.1}%
-\item Using built-in constants and functions.\\
-\label{sec-2.2}%
-\item Using <Tab> to see the documentation of a function.\\
-\label{sec-2.3}%
-\item Simple calculus operations .\\
-\label{sec-2.4}%
-\item Substituting values in expression using substitute function.\\
-\label{sec-2.5}%
-\item Creating symbolic matrices and performing operation on them .\\
-\label{sec-2.6}%
-\end{itemize} % ends low level
+\begin{itemize}
+\item Simple calculus operations .
+\item Substituting values in expression
+ using substitute function.
+\item Creating symbolic matrices and
+ performing operation on them .
+\end{itemize}
+\end{frame}
+\begin{frame}
+\frametitle{Thank you!}
+\label{sec-15}
+
+ \begin{block}{}
+ \begin{center}
+ This spoken tutorial has been produced by the
+ \textcolor{blue}{FOSSEE} team, which is funded by the
+ \end{center}
+ \begin{center}
+ \textcolor{blue}{National Mission on Education through \\
+ Information \& Communication Technology \\
+ MHRD, Govt. of India}.
+ \end{center}
+ \end{block}
\end{frame}
\end{document}