
Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Parallel Computation of Axisymmetric Jets

SciPy.in 2010

Nek Sharan

Department of Aerospace Engineering
Indian Institute of Technology Bombay

December 13, 2010

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Outline

1 Introduction

2 Python and Cython Implementation

3 Parallelization of Code

4 Conclusion

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Flow Physics
In-house C code
Flow conditions and Computational domain
Parallel computing

Outline

1 Introduction

2 Python and Cython Implementation

3 Parallelization of Code

4 Conclusion

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Flow Physics
In-house C code
Flow conditions and Computational domain
Parallel computing

Flow Physics

Imperfectly expanded jet
Resonant screech loop

Instability wave growth
Instability-shock interaction
Acoustic feedback
Receptivity processses

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Flow Physics
In-house C code
Flow conditions and Computational domain
Parallel computing

In-house C code

Favre-�ltered Axi-symmetric Navier Stokes Solver

Spatail discretization - 5th order WENO scheme

Advancement in time by 2nd order TVD Runge-Kutta time
stepping

Smagorinsky's eddy viscosity model for subgrid scale modeling

Constants for subgrid models -> based on DNS results of
Erlebacher et al

Accepts input parameters in text �le

Uses procedural programming approach

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Flow Physics
In-house C code
Flow conditions and Computational domain
Parallel computing

Flow conditions and Computational domain

Flow Variables P (N/m2) T (K) r (Kg/m3) u (m/s) v (m/s)
Ambient Condition 101320 288.15 1.225 0 0

Nozzle Exit Condition 128119.35 240.12 1.8591 310.61 0

b1−b4 (inviscid wall)
Nozzle Lip

Axis of symmetry

NRBC

NRBC

NRBC

0.5D

 7.0D

3.0D

0.2D thick lip

 0.5D

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Flow Physics
In-house C code
Flow conditions and Computational domain
Parallel computing

Parallel computing

Shared memory

All processors access all memory as global address space
Changes in a memory location e�ected by one processor are
visible to all other processors
Advantage: Data sharing between tasks is fast and uniform
Disadvantage: Lack of scalability between memory and CPUs

Distributed memory

Processors have their own local memory
Memory addresses in one processor do not map to another
processor
Advantage: Memory is scalable with number of processors
Disadvantage: Synchronization between tasks is programmer's
responsibility

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Optimization with Cython
Performance
Multi-threading
Thread Scheduling
Final Performance
Signi�cance

Outline

1 Introduction

2 Python and Cython Implementation

3 Parallelization of Code

4 Conclusion

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Optimization with Cython
Performance
Multi-threading
Thread Scheduling
Final Performance
Signi�cance

Optimization with Cython

Implementation Average CPU time for a iteration Speedup

Python 193.34 s
In-house C code 0.61 s 316.9x

Compiling in Cython

Declaration of variables

Declaration of numpy arrays

Switching o� boundscheck and wraparound

Multi-threading

Software Version

Python 2.6
Cython 0.12.1

matplotlib 0.99.1.1

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Optimization with Cython
Performance
Multi-threading
Thread Scheduling
Final Performance
Signi�cance

Performance

Implementation 1Average CPU time for an iteration Speedup

Python 193.34 s
Compilation in Cython 174.97 s 1.11x
Variable type declaration 155.79 s 1.24x
Numpy array declaration 1.19 s 162.5x

boundscheck and wraparound 0.94 s 205.7x
In-house C code 0.61 s

Processor : Intel(R) Core(TM)2 Duo CPU E7500@ 2.93GHz with 3072 KB cache size

1Average CPU time computed by averaging the time for 3 iterations on a

350 x 300 uniform mesh
Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Optimization with Cython
Performance
Multi-threading
Thread Scheduling
Final Performance
Signi�cance

Multi-threading

No OpenMP support

Threading module of Python employed

Global Interpreter Lock (GIL)

Controls thread execution
Ensures exclusive access to interpreter internals
Necessary for a Python operation

Python does not have a thread scheduler

with nogil statement was used to get rid of GIL

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Optimization with Cython
Performance
Multi-threading
Thread Scheduling
Final Performance
Signi�cance

Thread Scheduling

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Optimization with Cython
Performance
Multi-threading
Thread Scheduling
Final Performance
Signi�cance

Final Performance

Spatial derivative for axial and radial direction

independent of each other
computed on 2 threads

Implementation Average CPU time for an iteration Speedup

Python 193.34 s
Compilation in Cython 174.97 s 1.11x
Variable type declaration 155.79 s 1.24x
Numpy array declaration 1.19 s 162.5x

boundscheck and wraparound 0.94 s 205.7x
Multi-threading 0.52 s 371.8x
In-house C code 0.61 s

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Optimization with Cython
Performance
Multi-threading
Thread Scheduling
Final Performance
Signi�cance

Signi�cance

LES computations -> 100 thousand iterations or more for
developed �ow
Improvement of 0.09 s/iteration saves 2.5 hrs of CPU time

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Parallel programming models
Parallel scheme
Performance results
Pressure Contour

Outline

1 Introduction

2 Python and Cython Implementation

3 Parallelization of Code

4 Conclusion

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Parallel programming models
Parallel scheme
Performance results
Pressure Contour

Parallel programming models

Thread based model

Single process creates a number of sub-processes (threads)
Threads communicate with each other through global memory
OpenMP is used on the subdomain created by MPI based
parallelization

Message Passing model

Di�erent sets of task running on di�erent machines
Data exchange is through communication
Domain decomposition by radially splitting the domain
Three grid point interface

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Parallel programming models
Parallel scheme
Performance results
Pressure Contour

Parallel scheme

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Parallel programming models
Parallel scheme
Performance results
Pressure Contour

Performance results

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Parallel programming models
Parallel scheme
Performance results
Pressure Contour

Pressure contour

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Outline

1 Introduction

2 Python and Cython Implementation

3 Parallelization of Code

4 Conclusion

Nek Sharan Parallel Computation of Axisymmetric Jets

Introduction
Python and Cython Implementation

Parallelization of Code
Conclusion

Conclusion

Python, on optimization with Cython, provides performance
equivalent to C code

Shared and Distributed memory model successfully
implemented

Optimization of inter-processor communication could further
enhance performance

Computational results successfully matched with the
experimental results in literature

Nek Sharan Parallel Computation of Axisymmetric Jets

	Introduction
	
	
	
	

	Python and Cython Implementation
	
	
	
	
	
	

	Parallelization of Code
	
	
	
	

	Conclusion

