
Python for Science and Engg:
SciPy

FOSSEE

Department of Aerospace Engineering
IIT Bombay

SciPy.in 2010, Tutorials

FOSSEE (IIT Bombay) Solving Equations & ODEs 1 / 44



Least Squares Fit

Outline

1 Least Squares Fit

2 Solving linear equations

3 Finding Roots

4 ODEs

5 FFTs

FOSSEE (IIT Bombay) Solving Equations & ODEs 2 / 44



Least Squares Fit

L vs. T 2 - Scatter
Linear trend visible.

FOSSEE (IIT Bombay) Solving Equations & ODEs 3 / 44



Least Squares Fit

L vs. T 2 - Line
This line does not make any mathematical sense.

FOSSEE (IIT Bombay) Solving Equations & ODEs 4 / 44



Least Squares Fit

L vs. T 2 - Least Square Fit
This is what our intention is.

FOSSEE (IIT Bombay) Solving Equations & ODEs 5 / 44



Least Squares Fit

Matrix Formulation

We need to fit a line through points for the
equation T 2 = m · L + c
In matrix form, the equation can be represented as

Tsq = A · p, where Tsq is


T 2

1
T 2

2
...

T 2
N

 , A is


L1 1
L2 1
... ...

LN 1

 and

p is
[

m
c

]
We need to find p to plot the line

FOSSEE (IIT Bombay) Solving Equations & ODEs 6 / 44



Least Squares Fit

Getting L and T 2

In []: L, T = loadtxt(’pendulum.txt’,
unpack=True)

In []: tsq = T*T

FOSSEE (IIT Bombay) Solving Equations & ODEs 7 / 44



Least Squares Fit

Generating A

In []: A = array([L, ones_like(L)])
In []: A = A.T

FOSSEE (IIT Bombay) Solving Equations & ODEs 8 / 44



Least Squares Fit

lstsq . . .

Now use the lstsq function
Along with a lot of things, it returns the least
squares solution

In []: result = lstsq(A,tsq)
In []: coef = result[0]

FOSSEE (IIT Bombay) Solving Equations & ODEs 9 / 44



Least Squares Fit

Least Square Fit Line . . .

We get the points of the line from coef

In []: Tline = coef[0]*L + coef[1]

In []: Tline.shape

Now plot Tline vs. L, to get the Least squares fit
line.

In []: plot(L, Tline, ’r’)

In []: plot(L, tsq, ’o’)

FOSSEE (IIT Bombay) Solving Equations & ODEs 10 / 44



Least Squares Fit

Least Squares Fit

FOSSEE (IIT Bombay) Solving Equations & ODEs 11 / 44



Solving linear equations

Outline

1 Least Squares Fit

2 Solving linear equations

3 Finding Roots

4 ODEs

5 FFTs

FOSSEE (IIT Bombay) Solving Equations & ODEs 12 / 44



Solving linear equations

Solution of equations
Consider,

3x + 2y − z = 1
2x − 2y + 4z = −2

−x +
1
2

y − z = 0

Solution:

x = 1
y = −2
z = −2

FOSSEE (IIT Bombay) Solving Equations & ODEs 13 / 44



Solving linear equations

Solving using Matrices

Let us now look at how to solve this using matrices

In []: A = array([[3,2,-1],
[2,-2,4],
[-1, 0.5, -1]])

In []: b = array([1, -2, 0])
In []: x = solve(A, b)

FOSSEE (IIT Bombay) Solving Equations & ODEs 14 / 44



Solving linear equations

Solution:

In []: x
Out[]: array([ 1., -2., -2.])

FOSSEE (IIT Bombay) Solving Equations & ODEs 15 / 44



Solving linear equations

Let’s check!

In []: Ax = dot(A, x)
In []: Ax
Out[]: array([ 1.00000000e+00, -2.00000000e+00,
-1.11022302e-16])

The last term in the matrix is actually 0!
We can use allclose() to check.

In []: allclose(Ax, b)
Out[]: True

10 m

FOSSEE (IIT Bombay) Solving Equations & ODEs 16 / 44



Solving linear equations

Problem

Solve the set of equations:

x + y + 2z − w = 3
2x + 5y − z − 9w = −3
2x + y − z + 3w = −11

x − 3y + 2z + 7w = −5

15 m

FOSSEE (IIT Bombay) Solving Equations & ODEs 17 / 44



Solving linear equations

Solution

Use solve()

x = −5
y = 2
z = 3
w = 0

FOSSEE (IIT Bombay) Solving Equations & ODEs 18 / 44



Finding Roots

Outline

1 Least Squares Fit

2 Solving linear equations

3 Finding Roots

4 ODEs

5 FFTs

FOSSEE (IIT Bombay) Solving Equations & ODEs 19 / 44



Finding Roots

SciPy: roots

Calculates the roots of polynomials
To calculate the roots of x2 − 5x + 6

In []: coeffs = [1, -5, 6]
In []: roots(coeffs)
Out[]: array([3., 2.])

FOSSEE (IIT Bombay) Solving Equations & ODEs 20 / 44



Finding Roots

SciPy: fsolve

In []: from scipy.optimize import fsolve

Finds the roots of a system of non-linear equations
Input arguments - Function and initial estimate
Returns the solution

FOSSEE (IIT Bombay) Solving Equations & ODEs 21 / 44



Finding Roots

fsolve

Find the root of sin(z) + cos2(z) nearest to 0

FOSSEE (IIT Bombay) Solving Equations & ODEs 22 / 44



Finding Roots

fsolve

Root of sin(z) + cos2(z) nearest to 0

In []: fsolve(sin(z)+cos(z)*cos(z), 0)
NameError: name ’z’ is not defined

FOSSEE (IIT Bombay) Solving Equations & ODEs 23 / 44



Finding Roots

fsolve

In []: z = linspace(-pi, pi)
In []: fsolve(sin(z)+cos(z)*cos(z), 0)

TypeError:

’numpy.ndarray’object is not callable

FOSSEE (IIT Bombay) Solving Equations & ODEs 24 / 44



Finding Roots

Functions - Definition

We have been using them all along. Now let’s see how
to define them.

In []: def g(z):
....: return sin(z)+cos(z)*cos(z)

def – keyword
name: g
arguments: z
return – keyword

FOSSEE (IIT Bombay) Solving Equations & ODEs 25 / 44



Finding Roots

Functions - Calling them

In []: g()
---------------------------------------

TypeError:g() takes exactly 1 argument
(0 given)

In []: g(0)
Out[]: 1.0
In []: g(1)
Out[]: 1.1333975665343254

More on Functions later . . .

FOSSEE (IIT Bombay) Solving Equations & ODEs 26 / 44



Finding Roots

fsolve . . .
Find the root of sin(z) + cos2(z) nearest to 0
In []: fsolve(g, 0)
Out[]: -0.66623943249251527

FOSSEE (IIT Bombay) Solving Equations & ODEs 27 / 44



Finding Roots

Exercise Problem

Find the root of the equation
x2 − sin(x) + cos2(x) = tan(x) nearest to 0

FOSSEE (IIT Bombay) Solving Equations & ODEs 28 / 44



Finding Roots

Solution

def g(x):
return x**2 - sin(x) + cos(x)*cos(x) - tan(x)

fsolve(g, 0)

FOSSEE (IIT Bombay) Solving Equations & ODEs 29 / 44



ODEs

Outline

1 Least Squares Fit

2 Solving linear equations

3 Finding Roots

4 ODEs

5 FFTs

FOSSEE (IIT Bombay) Solving Equations & ODEs 30 / 44



ODEs

Solving ODEs using SciPy

Consider the spread of an epidemic in a population
dy
dt = ky(L − y) gives the spread of the disease
L is the total population.
Use L = 2.5E5, k = 3E − 5, y(0) = 250
Define a function as below

In []: from scipy.integrate import odeint
In []: def epid(y, t):

.... k = 3.0e-5

.... L = 2.5e5

.... return k*y*(L-y)

....

FOSSEE (IIT Bombay) Solving Equations & ODEs 31 / 44



ODEs

Solving ODEs using SciPy . . .

In []: t = linspace(0, 12, 61)

In []: y = odeint(epid, 250, t)

In []: plot(t, y)

FOSSEE (IIT Bombay) Solving Equations & ODEs 32 / 44



ODEs

Result

FOSSEE (IIT Bombay) Solving Equations & ODEs 33 / 44



ODEs

ODEs - Simple Pendulum
We shall use the simple ODE of a simple pendulum.

θ̈ = −
g
L

sin(θ)

This equation can be written as a system of two
first order ODEs

θ̇ = ω (1)

ω̇ = −
g
L

sin(θ) (2)

At t = 0 :

θ = θ0(10o) & ω = 0 (Initial values)

FOSSEE (IIT Bombay) Solving Equations & ODEs 34 / 44



ODEs

ODEs - Simple Pendulum . . .

Use odeint to do the integration

In []: def pend_int(initial, t):
.... theta = initial[0]
.... omega = initial[1]
.... g = 9.81
.... L = 0.2
.... F=[omega, -(g/L)*sin(theta)]
.... return F
....

FOSSEE (IIT Bombay) Solving Equations & ODEs 35 / 44



ODEs

ODEs - Simple Pendulum . . .

t is the time variable
initial has the initial values

In []: t = linspace(0, 20, 101)
In []: initial = [10*2*pi/360, 0]

FOSSEE (IIT Bombay) Solving Equations & ODEs 36 / 44



ODEs

ODEs - Simple Pendulum . . .

In []: from scipy.integrate import odeint

In []: pend_sol = odeint(pend_int,
initial,t)

FOSSEE (IIT Bombay) Solving Equations & ODEs 37 / 44



ODEs

Result

FOSSEE (IIT Bombay) Solving Equations & ODEs 38 / 44



FFTs

Outline

1 Least Squares Fit

2 Solving linear equations

3 Finding Roots

4 ODEs

5 FFTs

FOSSEE (IIT Bombay) Solving Equations & ODEs 39 / 44



FFTs

The FFT

We have a simple signal y(t)
Find the FFT and plot it

In []: t = linspace(0, 2*pi, 500)
In []: y = sin(4*pi*t)

In []: f = fft(y)
In []: freq = fftfreq(500, t[1] - t[0])

In []: plot(freq[:250], abs(f)[:250])
In []: grid()

FOSSEE (IIT Bombay) Solving Equations & ODEs 40 / 44



FFTs

FFTs cont. . .

In []: y1 = ifft(f) # inverse FFT
In []: allclose(y, y1)
Out[]: True

FOSSEE (IIT Bombay) Solving Equations & ODEs 41 / 44



FFTs

FFTs cont. . .
Let us add some noise to the signal
In []: yr = y + random(size=500)*0.2
In []: yn = y + normal(size=500)*0.2

In []: plot(t, yr)
In []: figure()
In []: plot(freq[:250],

...: abs(fft(yn))[:250])

random: produces uniform deviates in [0, 1)
normal: draws random samples from a Gaussian
distribution
Useful to create a random matrix of any shape

FOSSEE (IIT Bombay) Solving Equations & ODEs 42 / 44



FFTs

FFTs cont. . .

Filter the noisy signal:

In []: from scipy import signal
In []: yc = signal.wiener(yn, 5)
In []: clf()
In []: plot(t, yc)
In []: figure()
In []: plot(freq[:250],

...: abs(fft(yc))[:250])

Only scratched the surface here . . .

FOSSEE (IIT Bombay) Solving Equations & ODEs 43 / 44



FFTs

Things we have learned

Least Square Fit
Solving Linear Equations
Defining Functions
Finding Roots
Solving ODEs
Random number generation
FFTs and basic signal processing

FOSSEE (IIT Bombay) Solving Equations & ODEs 44 / 44


	Least Squares Fit
	Solving linear equations
	Finding Roots
	ODEs
	FFTs

