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Flow Physics

Imperfectly expanded jet
Resonant screech loop

Instability wave growth
Instability-shock interaction
Acoustic feedback
Receptivity processses
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In-house C code

Favre-�ltered Axi-symmetric Navier Stokes Solver

Spatail discretization - 5th order WENO scheme

Advancement in time by 2nd order TVD Runge-Kutta time
stepping

Smagorinsky's eddy viscosity model for subgrid scale modeling

Constants for subgrid models -> based on DNS results of
Erlebacher et al

Accepts input parameters in text �le

Uses procedural programming approach
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Flow conditions and Computational domain

Flow Variables P (N/m2) T (K) r (Kg/m3) u (m/s) v (m/s)
Ambient Condition 101320 288.15 1.225 0 0

Nozzle Exit Condition 128119.35 240.12 1.8591 310.61 0

b1−b4 (inviscid wall)
Nozzle Lip

Axis of symmetry

NRBC

NRBC

NRBC

0.5D

  7.0D

3.0D

0.2D thick lip

 0.5D
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Parallel computing

Shared memory

All processors access all memory as global address space
Changes in a memory location e�ected by one processor are
visible to all other processors
Advantage: Data sharing between tasks is fast and uniform
Disadvantage: Lack of scalability between memory and CPUs

Distributed memory

Processors have their own local memory
Memory addresses in one processor do not map to another
processor
Advantage: Memory is scalable with number of processors
Disadvantage: Synchronization between tasks is programmer's
responsibility
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Optimization with Cython

Implementation Average CPU time for a iteration Speedup

Python 193.34 s
In-house C code 0.61 s 316.9x

Compiling in Cython

Declaration of variables

Declaration of numpy arrays

Switching o� boundscheck and wraparound

Multi-threading

Software Version

Python 2.6
Cython 0.12.1

matplotlib 0.99.1.1
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Performance

Implementation 1Average CPU time for an iteration Speedup

Python 193.34 s
Compilation in Cython 174.97 s 1.11x
Variable type declaration 155.79 s 1.24x
Numpy array declaration 1.19 s 162.5x

boundscheck and wraparound 0.94 s 205.7x
In-house C code 0.61 s

Processor : Intel(R) Core(TM)2 Duo CPU E7500@ 2.93GHz with 3072 KB cache size

1Average CPU time computed by averaging the time for 3 iterations on a

350 x 300 uniform mesh
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Multi-threading

No OpenMP support

Threading module of Python employed

Global Interpreter Lock (GIL)

Controls thread execution
Ensures exclusive access to interpreter internals
Necessary for a Python operation

Python does not have a thread scheduler

with nogil statement was used to get rid of GIL
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Thread Scheduling
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Final Performance

Spatial derivative for axial and radial direction

independent of each other
computed on 2 threads

Implementation Average CPU time for an iteration Speedup

Python 193.34 s
Compilation in Cython 174.97 s 1.11x
Variable type declaration 155.79 s 1.24x
Numpy array declaration 1.19 s 162.5x

boundscheck and wraparound 0.94 s 205.7x
Multi-threading 0.52 s 371.8x
In-house C code 0.61 s
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Signi�cance

LES computations -> 100 thousand iterations or more for
developed �ow
Improvement of 0.09 s/iteration saves 2.5 hrs of CPU time
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Parallel programming models

Thread based model

Single process creates a number of sub-processes (threads)
Threads communicate with each other through global memory
OpenMP is used on the subdomain created by MPI based
parallelization

Message Passing model

Di�erent sets of task running on di�erent machines
Data exchange is through communication
Domain decomposition by radially splitting the domain
Three grid point interface
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Conclusion

Python, on optimization with Cython, provides performance
equivalent to C code

Shared and Distributed memory model successfully
implemented

Optimization of inter-processor communication could further
enhance performance

Computational results successfully matched with the
experimental results in literature
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