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Optimization Primer 

1 What is Optimization? 

Optimization is the study of how to find the best (optimum) solution to a 
problem.  

2 Objective Function 

The objective function, or cost function is the mathematic representation of 
the problem to be solved. The function should be formulated such that its 
values vary with a parameter (or parameters). The goal is to find the value 
of the parameter at which the function obtains an extreme (i.e. lowest or 
highest) value. Typically, if the highest value is the goal, the function is 
multiplied by -1 so that this new function now obtains its minimum where 
the old function obtains its maximum. This is done so that algorithms can 
be standardized, always looking for the minimum of the function provided. 
Because of this, the problem is generally expressed 

min ( )
x

f x       

where f is the objective function. 

Generally, it is very difficult to find the solutions analytically. Therefore, 
most optimization methods are iterative, meaning they start at an initial 
point, and “move” around the parameter space looking for the solution. 
There are many ways to do this.  

3 Global VS Local Minima  
 Figure 1 illustrates a function f defined over a two-dimensional space  

*X = (X1,X2).  A point x  is called a global minimizer if over the entire 
possible range of parameters, provides the lowest function value. This is 
generally extremely hard to find, and will be discussed in further detail.   

     ( *) ( )f x f x  ≤

A local minimizer is a point *x  which is not necessarily lower than ALL 
other points, but it is lower than all of the points surrounding it. There are 
very “mathy” ways to describe these neighboring points.  

  



 

Figure 1 : Global and local optima of a two-dimensional function 

4 Unconstrained Optimization 

Optimization problems for which the parameter is allowed to take any value 
are called “unconstrained” problems. 

4.1 Optimality Conditions  

From basic calculus, we know that the minimum of a function occurs when 
the derivative is 0. Since we frequently deal with more than a single 
dimensional problem, we require that the gradient be zero. 

4.1.1 First Order Necessary Conditions  

A necessary condition is a condition which must be true at a solution point, but 
knowing that it is true is not enough to ensure the point is a solution. They are 
called “first order” because they look at only the first derivative of the objective 
function.  

( *) 0f x∇     =  

  



4.1.2 Second Order Necessary Conditions  
2 ( *) 0f x∇     ≥

2 ( *) 0f x∇ =

2 ( *) 0f x

 

That is, the Hessian of the objective function is positive semi-definite. When, 
 the point could be a saddle point of the function instead of a 

minimum, which is the reason this condition is not sufficient to show that a 
point is the minimum. 

4.1.3 Second Order Sufficient Conditions  

A sufficient condition is one which if it is true for a point, the point is 
definitely a solution.  

           >  ∇

As described above, the only difference between this sufficient condition 
and the second order necessary condition is that the Hessian is not allowed 
to be zero.  

 

4.2 Line Search Methods  

A general class of algorithm which, at each iteration, chooses a direction 
from the current point and looks for a lower function value along that 
direction. The length of the step to take in that direction is extremely 
important. 

4.3 Steepest Descent Direction  

The negative gradient is an obvious choice for the direction which will yield 
a lower objective function value. This method is very simple in that it does 
not require calculating the second derivative. However, it can be very slow. 

 

  



4.4 Newton Direction 
2 1( )N

k k kf f−p                                                        = − ∇ ∇

1
k k k

 

This is troublesome because if the Hessian is not positive definite, the 
Newton direction may not be defined. However, if it does work, it has a fast 
rate of convergence. 

4.5 Quasi-Newton Method  

In place of the true Hessian, they use an approximation to the hessian which 
is updated at each iteration. This approximation is found by looking at the 
difference in the gradient, which is exactly a discrete second derivative. The 
search direction is found by simply replacing the Hessian with the Hessian 
approximation.  

          B f−p − ∇  =

 

 

Optimization Strategy  

 
 Most global optimization strategies fall into one of the two categories - 
Exact methods and Heuristic methods.  
Deterministic algorithms belonging to the first group of exact methods, provide 
a rigorous guarantee for finding at least one or all global solutions. However, 
for larger dimensional models, and for more complicated model functions, the 
associated computational burden can easily become excessive.  
Stochastic algorithms, which come under the second category of heuristic 
methods, as a rule do not provide a strict convergence guarantee.  
 Main focus of this toolbox is on global optimization for polynomial 
problems. Polynomial optimization problems arise in the mathematical 
modelling of several real world applications. Knowledge of the range of a 
polynomial in several variables on a multidimensional rectangle is relevant for 
numerous investigations and applications in numerical and functional analysis, 
combinatorial optimization, and finite geometry. In many applications powerful 
multidimensional polynomial representations are crucial to many aspects of 
object modelling, For instance, in control and communication applications, 

  



simple and efficient polynomial evaluation is important for real-time 
implementation of nonlinear controllers. 
 Exact algebraic techniques for solving polynomial programming 
problems find all the critical points, and then identify the smallest value of the 
polynomial at any critical point. Such techniques include Grobner bases, 
eigenvalue method, resultants and discriminants and numerical homotopy 
methods , but these may be computationally expensive and the number of 
critical points could be infinite. 
 To find the globally optimal solutions of polynomial programs, several 
existing methods use linearization techniques to approximate polynomial terms 
. Since linearizations are only approximations, accuracy (i.e., sharpness) is less 
important than efficiency. Few algorithms for global optimizations of 
multivariate polynomial functions use some relaxation techniques (such as 
linear matrix inequalities), which are further modifications of the linearization 
techniques. These techniques involve sum of squares and semidefinite 
programming. The accuracy of the solutions depends heavily on the relaxation 
order (the minimal relaxation order can never be less than twice the degree of 
the polynomial), and hence have to be invoked iteratively with increasing 
orders until the global optimum is reached. When the relaxation order 
increases, the number of relaxed variables increases, hence the overall 
computational time increases very quickly. 
 Another method for computing the range of a polynomial is obtained 
through the use of Bernstein forms; these are intimately connected to Bernstein 
polynomials. Range analysis using the Bernstein form is based on the Bernstein 
convex hull property. The method relies on the simple idea that if a polynomial 
is written in the Bernstein basis over a box, the range of the polynomial is 
bounded by the values of the minimum and maximum Bernstein coefficients. 
The Bernstein form also allows bounding the range of a multivariate 
polynomial over a box. 

 

 

 

 

 

  



Optimization Approaches 

A. Deterministic 

The most successful are: 

• Interval Optimization / Interval Algebra.  
• Branch and bound methods 
• Methods based on real algebraic geometry 

B. Stochastic, thermodynamics 
Several Monte-Carlo-based algorithms exist: 

• Simulated annealing 
• Direct Monte-Carlo sampling 
• Basin hopping technique (aka Monte-Carlo with minimization) 
• Stochastic tunneling 
• Parallel tempering 
• Continuation methods 

C. Heuristics and metaheuristics 
Other approaches include heuristic strategies to search the search space in a 
(more or less) intelligent way, including: 

• Evolutionary algorithms (e.g., genetic algorithms and evolution 
strategies) 

• Swarm-based optimization algorithms (e.g., particle swarm optimization 
and ant colony optimization) 

• Memetic algorithms, combining global and local search strategies 
• Reactive search optimization (i.e. integration of sub-symbolic machine 

learning techniques into search heuristics) 
• Differential evolution 
• Graduated optimization 

D. Response surface methodology based approaches 

• IOSO Indirect Optimization based on Self-Organization 

Links for global optimization 
• http://www.mat.univie.ac.at/~neum/glopt.html 
• http://www.it-weise.de/projects/book.pdf  (Free e-book by Thomas Weise) 

  



 

Applications of Global optimization 

Typical examples of global optimization applications include: 

• Protein structure prediction (minimize the energy/free energy function) 
• Computational phylogenetics (e.g., minimize the number of character 

transformations in the tree) 
• Traveling salesman problem and circuit design (minimize the path 

length) 
• Chemical engineering (e.g., analyzing the Gibbs free energy) 
• Safety verification, safety engineering (e.g., of mechanical structures, 

buildings) 
• Worst case analysis 
• Mathematical problems (e.g., the Kepler conjecture) 
• The starting point of several molecular dynamics simulations consists of 

an initial optimization of the energy of the system to be simulated. 
• Spin glasses 
• Calibration of radio propagation models 

 

Optimization Toolbox using Bernstein Form 
 
Bernstein Polynomial approach 
 
 If a polynomial is written in the Bernstein basis over a box, then the 
range of the polynomial is bounded by the values of the minimum and 
maximum Bernstein coefficients. Capturing the beautiful properties of the 
Bernstein polynomials, tight inclusions for the range of the polynomial on the 
given domain can be obtained. 
 The key feature of the Bernstein approach to range computations is that 
bounds on the global optima are guaranteed. The approach does not require any 
initial guess for starting the optimization, but only an initial search box 
bounding the domain of interest. Moreover, if multiple solutions are present, 
then all solutions are guaranteed to be obtained. Without any prior knowledge 
of stationary points, the global optimum can be found to the prescribed 
accuracy, subject to the machine precision. The approach has an added 
advantage that it requires neither resetting of any ‘tuning parameter’ values nor 
any ‘relaxations’.  

  



 Convex / Non – Convex Problems 

      
 

 Constrained / Unconstrained Problems 
 
 a) Constrained Problems :  
       I) Equality constrained Problems :  

                                        min { ( )}x f x  subject to (g x) 0=  
                                    where (.)f  is the scalar-valued objective function and  is                      (.)g

mi

                                          vector-valued on constraint function 
 
       II) Inequality constrained Problems:  
                                          n { ( )}x f x  subject to (g x) 0=  and (h x) 0≤  
       where (.)f  is the scalar-valued objective function and  is                               
        vector-valued on equality constraint function;  is the inequality constraint     

(.)g
(.)h

                   function 
                 Example: find the optimum of the following function within the range [0, )+∞  

 
 
b) Unconstrained Problems :  
 Example: find the optimum of the following function within the range [0.5 , 1.5] 

A B
B A

NON-CONVEX CONVEX

Minimum is zero

  



 
• Univariate / Multivariate Problems 

Minimum is here

 
      Objective function involving one variable may be called univariate. 
 
      Objective function involving more than one variable may be called 
multivariate. 
 
Bernstein form  
 
Consider the nth degree polynomial p in a single variable in power form 

  [0,1]x U∈ =

       0
( )

n
i

i
i

p x a x
=

=∑
ia ∈�   , n∈�  

The transformation of a polynomial from its power form into its Bernstein form 
results in 

   
0

( ) ( )
k

k k
j j

j
p x b B

=

= ∑ x ,           ∀ [0,1]x∈  and  k n≥

where ( )k
jB x  are the Bernstein basis polynomials of degree k and  are the 

Bernstein coefficients 

k
jb

   
0

j
k
j i

i

j
i

b a
k
i

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

The Bernstein coefficients are collected in an array ( ) ( ( ))I IB u b u ∈S=  where 
 is called as Bernstein Patch. { : }S I I N= ≤

  



 
Properties of Bernstein Coefficients 
 
1. Let ( )p u denote the range of polynomial p on u . Then, by the range enclosing    
    property of the Bernstein coefficients 
   ( ) [min ( ),max ( )]p u B u B⊆ u  
2. Convex hull property : 
Let , be the number of variables and l∈Ν 1 2( , ,..., ) l

lx x x x= ∈� . A multi-index I is 
defined as  and and multi-power 1 2( , ,..., ) l

lI i i i= ∈Ν x  is defined as  
1 2 ,...,i iI

1 2( , )li
lx x x

1 2( , ,N n n
x
)ln /

=
...,=

. A multi-index of maximum degrees N is defined as 
 and I N /i n for ( . For the multivariate case, the 1 1 2 2, / ,...,i n / )l li n

control points are ( / , ( )) :II N b u I S∈ .The convex hull property is, 
 
           0{( , ( )) : } {( / , ( )) : }Iconv x p x x u conv I N b u I S∈ ⊆ ∈
   
where  l0 1 2{0, } {0, } ... {0, }lS n n= × × × n S∈  and  P denotes the convex hull of P, 
i.e. the smallest convex set containing the set P. Thus, the convex hull property 
states that the range 

conv

( )p u  is contained in the convex hull of the control points. 

 
 

  



Illustration  
 
 
Example 1: To illustrate the Bernstein approach, consider the simple 
polynomial  
      ( ) (1 )p x x x= −   

whose range, [0, 1
4

] 

 In this example, comparing with 2
2 1a x a x a0+ +     where power n and coefficient 

are ,  0 1 22, 0, 1, 1n a a a= = = = −

Using Bernstein coefficient formula 
0

j
k
j i

i

j
i

b a
k
i

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑   Here, k (max. polynomial power)=2. 

i & j = 0,1,2 (i.e. up to k). 

gives, , 2
0 0b = 2

1
1 0.5
2

b or= ,  2
2 0b =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



For Example 
 

Bernstein Coefficient for following polynomials are: 
 
Example 1: 2x  
Ans:  

2
0b =---------- , =---------, =---------- 2

1b 2
2b

 
Example 2: 3 2x x x+ −  
Ans:  

3
0b =---------- , =---------, =----------, =----------- 3

1b 3
2b 3

3b
 
Example 3: 4x x+  
Ans: 

4
0b =---------- , =---------, =----------, b =-----------, b =----------- 4

1b 4
2b 4

3
4
4

2

43

 
Example 4:  3 22 1x x x− − +
Ans: 

3
0b =---------- , =---------, =----------, b =----------- 4

1b 3
2b 3

3

 
Example 5: 2 31 2x x x x− + + +  
Ans:   

4
0b =---------- , =---------, =----------, b =-----------, b =----------- 4

1b 4
2b 4

3
4
4

 
Example 6: 2 31 5 3x x x− − + −  
Ans:   

3
0b =---------- , =---------, =----------, =----------- 3

1b 3
2b 3

3b
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Vertex Property of Bernstein Form or Vertex Test 
 

• Remarkable feature:  
 Bernstein form provides us with a criterion to indicate if calculated 
 estimation is range or not. 
 

• Cargo and Shisha (1966), give such a criterion based on the vertex 
property. 

• Lemma 1 (Range lemma) (Cargo and Shisha, 1966): The range is 
bounded by the Bernstein coefficients as: 

  ([0,1]) min ,maxk k
j jj j

p b b⎡ ⎤⊆ ⎢ ⎥⎣ ⎦
 

• Lemma 2 (Vertex lemma) 
 
  ([0,1]) min ,maxk k

j jj j
p b b⎡ ⎤= ⎢ ⎥⎣ ⎦

 

 If and only if, 
   0min min{ , }k k

j kj
b b= kb

kb
 and 
   0max max{ , }k k

j kj
b b=

• Vertex lemma also holds for any subinterval of [0,1]. 
 

Illustration  
 
Consider again Example 1: ( ) (1 )p x x x= −  

For k=2, Bernstein Coefficients are  2
0 0b = , 2

1
1 0.5
2

b or= , 2
2 0b =  

Range lemma implies,  

  ([0,1])p  ⊆   10,
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 Check if above enclosure is the range itself or not. 
Now, apply Vertex lemma 
Minimum Bernstein coefficient is  and - occurs at vertices 2

0b 2
2b { }0, 2j∈ . 

Maximum Bernstein coefficient is - occurs at vertex 2
1b j =1. 

Vertex lemma is satisfied for the minimum. 
Vertex lemma is not satisfied for the maximum as, . 2 2

0 2max max{ , }k
jj

b b≠ b

So, by vertex lemma, above enclosure is not the range. 
 
 

  



Vertex Test Algorithm: 
 

1. Calculate Bmin from current B (Bernstein patch). 
2. Calculate minimum vertices of B. Bvermin. 
3. Calculate vertices of B. Bvertex. 
4. Check whether Bmin = = Bvermin ?  

1. Then, update stored minimum, zcap = min(Bmin,Bvermin)   
      // initial zcap = max(B) taken as worst case.   
2. Check Bmin = = Bvertex. ? 
3. Store current box in solution list, LXsol. 

5. If no, go for box subdivision. 
              
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 
 

Subdivision of Bernstein Form 
 

Vertex Condition not satisfied then apply Subdivide test – J. Garloff (1993). 
 

Let [ , ]D d d U= ⊆ and assume we have already the Bernstein coefficients on . 
Suppose  is bisected to produce two sub boxes  and  given by, 

D
D AD BD

    [ , ( )]AD d m D=  ; [ ( ), ]BD m D d= . 
Then, the Bernstein coefficients on the sub boxes  and  can be obtained 
from those on , by executing the following algorithm. 

AD BD
D

 
Subdivision Algorithm: 
 
Inputs: The box,   U  and its Bernstein Coefficients {D ⊆

k
jb }. 

Outputs: Sub boxes  and , and their Bernstein Coefficients { } and { }. AD BD
k
jb%

k
jb$

 
STRAT 

1. Bisect D to produce the two sub boxes AD  and BD . 
2. Compute the Bernstein Coefficients on sub box AD  as follows: 

a. Set: 0
jb ←  

k
jb , for 0,...,j k=  

b. FOR 1,...,i k=  DO 

 i
jb =  

{ }

1

1 1
1

1
2

i
j

i i
j j

b

b b

−

− −
−

⎧
⎪
⎨

+⎪⎩

for
for

j i
j i
<
≥

 

                    To obtain the new coefficients, apply the formula given above for    
   0,...,j k= . 

c. Find the Bernstein coefficients on sub box  AD  as  

   = , for . 
k
jb% k

jb 0,...,j k=

3. Find Bernstein Coefficients on sub box BD  from intermediate values in above 
step, as follows 

 =   for 
k
jb$ j

kb 0,...,j k= . 

4. RETURN AD , BD  and the associated Bernstein Coefficients {
k
jb% } and {

k
jb$ }. 

 
 
 

  



Illustration  
 
Algorithm Subdivision for Example 1. 
 
For k =4, we have already the Bernstein coefficients k

jb for the interval D= [
With t

0,1]. 
hese as the inputs to Algorithm subdivision, the results are:  

Bisect D to produce the two sub boxes AD = [1,0.5] and BD =[0.5,1]. 

The Bernstein coefficients on the sub box are AD 1 1 10, , , ,⎛ ⎞  10
8 48 4 4⎜ ⎟

The Bernstein coefficients on the sub box are 

⎝ ⎠

BD 1 10 1 10, , , ,
8 48 4 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

It is coincidental here that Bernstein coefficients for both the sub boxes are 
the same. 
Hence, by range lemma 

1  �( ) 0,p D ⎡⊆
4A
⎤

⎢ ⎥⎣ ⎦
 

  � 1( ) 0,
4Bp D ⎡ ⎤⊆ ⎢ ⎥⎣ ⎦

 

And by vertex lemma, 
1  �( ) 0p D ⎡= ,
4A
⎤

⎢ ⎥⎣ ⎦
 

  � 1( ) 0,
4Bp D ⎡ ⎤= ⎢ ⎥⎣ ⎦

 

 
 
In this example, using just one subdivision and application of the vertex lemma 

 

to the sub boxes we have been able to obtain the range of the given polynomial. 
 

 
 
 
 
 
 
 
 
 

  



Cut-off Test 

At any subdivision level, check if range in each new patch is already include in 

ut-off test Algorithm: 

1. Calculate minimum of B: Bmin  

HEN 
ND 

 

 

actual range stored (patches for which vertex condition is satisfied). 
Reject patch, if YES. 
 
C
 

2. Use latest updated zcap 
3. Check IF Bmin > zcap, T
     delete or discard  current box. E
4. Update zcap=min(zcap,Bvermin) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Global Optimization Algorithm 
 

Inputs: Degree of all variables, polynomial coefficient matrices N A  for the   
    objectiv unction and specified box e f X . 
Output: Global minimum zcap to the specifie tod lerance ∈ and all global   
     minimizers ( )iX  

Compute Bernstein coeffs. as
( )B xo

 
 
 
 

 
 
 
 

   Return global solution 

N

1 2X X X← ∪

, solz x L))

Initialize  max( ( ))z B xo=%

}{ { }' , (d) , solL X B Lo← ←

' {}L ≠

Add     to   

Y

Bisect X 

w(d) ε≤

N

Y
Pick last item from 'L

Y 

Check cut-off test 

N

    Vertex test 

N

Y 
N

  



Univariate and Unconstrained Examples with their Global 

 
xample 1. 

minimum and minimizer 

E 4 3 23 2 1x x x x− − + + −   [ 1,1]x = −        
se Tolerance on mini  (zcap) and minimizer (bound/box): 0.000001 

.^3+x.^2+2.*x-1; // Use dot operator for calculation 

  

                    U mum
 Ans: Type on Scilab command window: 
          x=-1:0.1:1; 
          f1=-x.^4-3*x
          plot(x,f1) 

 
Figure: Example 1 

Minimum, zcap = -2 
 

Minimizer, x= [1,1] 
 
 
 
 
 
 
 
 
 

  



Example 2. 3 210 17 8 2x x x− + +    [0,1]x =  
    

 
Figure: Example 2 

Ans: 
um, zcap = 2 

xample 3. 

Minim
Minimizer, x=[0,0] 
 
E 6 5 32.3 0.4 0.5x x x x+ + − +  [ 0.8,0.6]x = −  
Ans: 
Minimum, zcap = 0.4106 

834] 

xample 4. 

Minimizer, x=[0.3184,0.31
 

5 4 3 20.2 0.5 0.7x x x x+ + + −E x      [0,1]x =  
Ans: 
Minimum, zcap = -0.2407 

43] 

xample 5.  

Minimizer, x=[0.4043,0.40
 
E 5 4 3 20.2 0.5 0.7x x x x− + + + − x   [ 1,1]x = −  
Ans: 
Minimum, zcap = -0.6 
Minimizer, x=[1,1] 
 

  



Bivariate and Multivariate Examples with their Global   

1. Camel back: The six hump camel back function  
 

285   

1)  
  - 0.0898418   

    Lsol(2)  
   0.0898418   

5*y^2 

-13   

83   

) Heart dipole: A heart dipole problem (Eight Variables) 
*t^3+3*q*t*w^2-

= [-0.1, 0.4], q = [0.4, 1], r = [-0.7,-0.4], s = [-0.7, 0.4], 
] 

486   

    

9063   

 

  Minimum and minimizer  
 

f(x,y) = 4*x^2-2.1*x^4+1/3*x^6+x*y-4*y^2+4*y^4 
where, x,y = [-3, 3],  
zcap  =  
  - 1.0316
 Lsol  =  
       Lsol(
  - 0.0898418
    0.7126565    0.7126565   
  
   
    0.0898418 
  - 0.7126565  - 0.7126565   
 

. Booth: The function defined by  2
f(x,y) = 74-38*x+5*x^2-34*y+8*x*y+
 
,y=[-10, 10]  x

zcap  =  
    5.116D
 Lsol  =  

883    3.00048    3.0004
   0.9997559    0.9997559   
 
3
f(p,q,r,s,t,u,v,w) = -p*u^3+3*p*u*v^2-r*v^3+3*r*v*u^2-q
s*w^3+3*s*w*t^2-0.9563453 
 
p
t = [0.1, 0.2], u = [-0.1, 0.2], v = [-0.3, 1.1], w = [-1.1,-0.3
 
cap  =  z

  - 1.7434
 Lsol  =  

  0.4         0.4        
    0.4          0.4         
  - 0.7        - 0.7         
  - 0.7        - 0.7         
    0.1          0.1         
  - 0.0789063  - 0.078
  - 0.3        - 0.3         
  - 1.1        - 1.1         
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